Derivative of Sigmoid Function

The sigmoid function is one of the most commonly used neural activations functions. Also, it is used in logistics regression. The advantage of using sigmoid function is that instead of giving discrete values i.e. 0 and 1 it gives a continuous value between 0 and 1. This makes it useful in predicting probabilities.

In this article, we will calculate derivative of sigmoid funciton. Let’s start with sigmoid formula :-

$$\sigma = \left(\frac{1}{1+e^{-x}}\right) $$

We can rearrange it by using power notation

$$\sigma = \left(1 + e^{-x}\right)^{-1}$$

Differentiating both side with respect to x.

$$\frac{d\sigma}{dx} = \frac{d}{dx}\left(1 + e^{-x}\right)^{-1}$$

$$\frac{d\sigma}{dx} = (-1) * (1+e^{-x})^{-2} * \frac{d}{dx}(1 + e^{-x})$$

$$\frac{d\sigma}{dx} = (-1) *(1+e^{-x})^{-2} *(-1)*(e^{-x})$$

$$\frac{d\sigma}{dx} = (1+e^{-x})^{-2} * (e^{-x})$$

$$\frac{d\sigma}{dx} = \frac{e^{-x}}{(1+e^{-x})^2}$$

$$\frac{d\sigma}{dx} = \frac{1}{1+e^{-x}} * \frac{e^{-x}}{1 + e^{-x}}$$

$$\frac{d\sigma}{dx} = \frac{1}{1+e^{-x}} * \frac{1 +e^{-x} -1 }{1 + e^{-x}}$$

$$\frac{d\sigma}{dx} = \frac{1}{1+e^{-x}} * \left(\frac{1 +e^{-x}}{1 + e^{-x}} – \frac{1}{1 + e ^{-x}}\right)$$

$$\frac{d\sigma}{dx} = \frac{1}{1+e^{-x}} * \left( 1 – \frac{1}{1 + e ^{-x}}\right)$$

$$\sigma^\mathbf| = \sigma\left(x\right)\left(1-\sigma\left(x\right)\right)$$

Leave a Comment

%d bloggers like this: